首页> 外文OA文献 >Decreasing, not increasing, leaf area will raise crop yields under global atmospheric change
【2h】

Decreasing, not increasing, leaf area will raise crop yields under global atmospheric change

机译:在全球大气变化的情况下,减少而不是增加叶面积将提高作物产量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Without new innovations, present rates of increase in yields of food crops globally are inadequate to meet the projected rising food demand for 2050 and beyond. A prevailing response of crops to rising [CO2 ] is an increase in leaf area. This is especially marked in soybean, the world's fourth largest food crop in terms of seed production, and the most important vegetable protein source. Is this increase in leaf area beneficial, with respect to increasing yield, or is it detrimental? It is shown from theory and experiment using open-air whole-season elevation of atmospheric [CO2 ] that it is detrimental not only under future conditions of elevated [CO2 ] but also under today's [CO2 ]. A mechanistic biophysical and biochemical model of canopy carbon exchange and microclimate (MLCan) was parameterized for a modern US Midwest soybean cultivar. Model simulations showed that soybean crops grown under current and elevated (550 [ppm]) [CO2 ] overinvest in leaves, and this is predicted to decrease productivity and seed yield 8% and 10%, respectively. This prediction was tested in replicated field trials in which a proportion of emerging leaves was removed prior to expansion, so lowering investment in leaves. The experiment was conducted under open-air conditions for current and future elevated [CO2 ] within the Soybean Free Air Concentration Enrichment facility (SoyFACE) in central Illinois. This treatment resulted in a statistically significant 8% yield increase. This is the first direct proof that a modern crop cultivar produces more leaf than is optimal for yield under today's and future [CO2 ] and that reducing leaf area would give higher yields. Breeding or bioengineering for lower leaf area could, therefore, contribute very significantly to meeting future demand for staple food crops given that an 8% yield increase across the USA alone would amount to 6.5 million metric tons annually.
机译:没有新的创新,目前全球粮食作物单产的增长率不足以满足2050年及以后预计的不断增长的粮食需求。作物对[CO2]升高的主要反应是叶片面积增加。这在大豆方面尤为明显,大豆是全球种子产量第四大粮食作物,也是最重要的植物蛋白来源。对于增加产量,叶面积的增加是有益的还是有害的?从理论和实验表明,使用露天全季节大气[CO2]升高,不仅在将来[CO2]升高的情况下,而且在当今[CO2]的情况下都是有害的。针对现代美国中西部大豆品种,对冠层碳交换和微气候(MLCan)的力学生物物理和生化模型进行了参数化。模型模拟表明,在当前和较高(550 [ppm])[CO2]的条件下生长的大豆作物对叶片的过度投资,预计这将分别降低生产力和种子产量8%和10%。在重复的田间试验中对这一预测进行了测试,在试验中,在扩张之前先去除了一部分新兴叶片,从而降低了叶片投资。该实验是在露天条件下针对伊利诺伊州中部的大豆游离空气浓缩浓缩设施(SoyFACE)中当前和未来升高的[CO2]进行的。该处理导致统计学上显着的8%产量增加。这是第一个直接证明,现代农作物品种的叶片多于当今和未来[CO2]的最佳产量,而且减少叶片面积将带来更高的产量。因此,由于仅美国一个地区的单产增加8%,即每年650万吨,因此,用于较低叶面积的育种或生物工程将对满足未来对主食作物的需求做出巨大贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号